

energie atomique • energies alternatives

TORE SUPRA : 2011

X LITAUDON on behalf of TORE SUPRA TEAM

CEA-IRFM, Institute for magnetic fusion research (IRFM) CEA Cadarache F-13108 St Paul Lez Durance. France e-mail: xavier.litaudon@cea.fr

2011 Experimental Campaign

eraie atomique • eneraies alternative

> 21 April up to end July 2011

> Overall Coordination

- Experiments & physics programme B. Saoutic & Y.
 Corre
- Technical coordination M. Houry

> Three Task forces

- Qualification of new CW LHCD system (ITER launcher and transmitter): A. Ekedahl
- Development of long pulse scenario : R. Dumont
- ITER operation preparation: S. Bremond

Scenario development: extended domain of steady-state operation

TORE SUPRA 2011

LHCD: Recent large upgrade

- 2009: Installation of PAM launcher
- 2010-11: 8 new klystrons on FAM
- > ICRH:

eneraie a

- up to 9MW during 30 s (3 antennae)
- or 3MW long pulse
- New Faraday screen (one antenna)
- > ECRH:
 - 700kW during 5s
- > IR monitoring:
 - for RF operation & to protect fully actively cooled tokamak
- > Upgrade diagnostics
 - Reflectometry

New CW klystrons validated on plasma operation

Coupled power: 3.8MW (> 4.0MW at klystrons) with Full Active Multi-junction launcher (FAM), fed by a set of eight 700 kW/3.7GHz CW klystrons.

Long pulse operation with both LHCD launchers

Both LHCD launchers together → 4.5MW/150s obtained (650MJ injected energy)

Opens new operational space (n_e, I_P) for long pulse operation

Control improvements for long pulse operation: transition to feedback controlled loop voltage

energie atomique • energies alternative

<u>Issue</u>: jump in Lower Hybrid power during transition from Ip control to $(V_{G0}, P_{LH}) <-> (I_p, V_{loop})$ control

Development : Multi Input Multi Output feedback control

TORE SUPRA Control oriented model development, feedback control design and test on simplified model and on METIS code, experimental validation

Measurements of Density Profile in the Scrape-off-Layer with Reflectometer Embedded in the LHCD Full Active Multijunction Antenna

EFDA

Crucial to study LH coupling and SOL physics Strong increase of density gradient in the SOL during LHCD

Ray-tracing modelling of full current drive discharge

C3PO/LUKE reproduce well the HXR profile and the driven current.

Synthetic diagnostic models well the line integrated HXR emission.

Y Peysson and J Decker, Phys. Plasmas (2008) J Decker et al., 19th RF Conf., Newport (2011)

Although good agreement in this example, robustness in LHCD modelling is still required. Y Peysson et al., 19th RF Conf., Newport (2011)

ITPA-IOS experiment: LHCD modelling vs HXR measurement

ITPA-IOS group, Kyoto, 18-21 October 2011

ITPA-IOS experiment, LHCD experiments at High Density : <u>Gas vs. Pellet Fuelling and role of edge fluctuation</u>

SOL density fluctuation

Goniche et al RF & EPS 2011 conf.

ICRF power stabilizes MHD activity in non-inductive LHCD discharges as expected

q-profile & improved confinement sustained in the GJ discharges

First Observation of Turbulence Dynamics in the Scrape-off-Layer (SOL) with Ultra-Fast Sweep Reflectometry

2011: New Faraday Screen for ICRH Antenna

Measurement of the DC floating potential with RF fields (Tunnel probes)

Thermo-mechanical calculation and comparison to experiments

ITPA-IOS group, Kyoto, 18-21 October 2011

Other issues related to ITER operation preparation

raie atomiaue • eneraies alternat

- Disruption runaway electrons suppression by high pressure fast gas injection
- Event / Exception handling

- High density/high radiation Operation
- EC assisted plasma start-up : assistance to plasma start-up by 2nd harmonic X-mode ECRH with 20° tangential injection (ITER at half magnetic field)
- Effect of local gas puffing on IC/ LHCD power coupling
- Heat flux pattern on leading edge of misaligned tile
- Characterisation of the SOL near limiter plasma tangency point
- Wall conditioning by low frequency glow discharges and by Ion Cyclotron

Runaway electron mitigation by high pressure fast gaz injection

ITPA-IOS group, Kyoto, 18-21 October 2011

First results: neon gas flow observed by fast camera

Propagation of the Neon gas injected by Fire from the top of the machine during plasma current quench

energie atomique • energies alternatives

Fast visible camera images filtered for Ne I line. Front moves with v ~500 m/s for Ne and 1200 for He (1/2 of gas velocity in vacuum)

F. St Laurent

R. Nouailletas

ITPA-IOS group, Kyoto, 18-21 October 2011

n_e/n_{Gr} =1.4 maintained for several $\tau_{\rm E}$ in RF heated plasmas with 90% radiated power

Regime similar to 'high recycling' regime in axisymmetrix X-pt divertors

energie atomique • energies alternatives

No degradation of global energy confinement

25

Tore Supra: prepare ITER long pulse operation

Shutdown: modification of HV 400kV network for ITER

Full H&CD CW capability & 2012 upgrade

- 6-7MW LHCD (CW) + 3MW ICRH on more than ~200s
- Assess power limit of CW ITER-PAM
- Antenna & machine protection upgrade
- Diagnostics upgrade: fast core reflectometry
- ECRH antenna upgrade (in collaboration with FOM): Mirror mouvement for real time control

Master long pulse operation: minimising risks for ITER

- fully non-inductive plasmas at higher I_p and density
- Disruption mitigation
- real time control for machine protection & performance optimisation: IR control of hot spots, ripple fast losses...
- Physics of evanescent V_{loop} plasma on time scale much longer than current diffusion: MHD, intrinsic rotation, ...

WEST : minimising risks for ITER operation Use Tore Supra assets to prepare ITER exploitation

WEST : filling the gap towards ITER actively cooled divertor

First integrated test : technology of high heat flux W PFC + tokamak operation

WEST : extending H mode towards steady state and exploring PWI with actively cooled W

energie atomique • energies alte

 Standard : long pulse 10 MW/m²

 High power : high performance shorter pulse

• High fluence : ITER fluence within a few days (6 years for JET !)c

Open for collaboration : EU + China, US ...

SCENARIO	HIGH POWER	STANDARD	HIGH FLUENCE
Plasma current	0.8 MA	0.6 MA	0.5 MA
Toroidal magnetic field	3.7 T	3.7 T	3.7 T
Plasma density	9 10 ¹⁹ m ⁻³	6 10 ¹⁹ m ⁻³	4 10 ¹⁹ m ⁻³
Total radiofrequency heating power	15 MW	12 MW	10 MW
Lower Hybrid Current Drive	6 MW	6 MW	7 MW
Ion Cyclotron Resonance Heating	9 MW	6 MW	3 MW
Plasma current flat-top duration	30 s	60 s	(1000 s)
Expected heat load*	6 MW/m ²	(11 MW/m ²)	15 MW/m ²
Expected ELM energy	51 kJ	32 kJ	26 kJ
Expected ELM frequency	59 Hz	76 Hz	77 Hz
Expected ELM load	40 kJ/m ²	52 kJ/m ²	74 kJ/m²
Expected operation time to reach one ITER pulse particle fluence	~6 months	~2 months	~few days

WEST : in time for ITER

X. Litaudon on behalf of Tore Supra team

Thanks for your attention !

ITPA-IOS group, Kyoto, 18-21 October 2011

Stationary electron ITBs in LHCD & ICRH long pulse discharges

Barrier characterization with ECCD

CRONOS interpretative transport analysis: clear e-ITB in the low magnetic shear region

ITER context

Self-consistent non-linear ICRH wave propagation and RF sheath rectification

 RF sheath rectification treated as Slow Wave propagation self-consistently coupled with DC edge plasma biasing. Non-linear coupling is ensured via RF and DC sheath boundary conditions.

SSWICH problem

Self-consistent Sheaths & Waves for IC Heating

Event / Exception handling architecture overview

